CHAPTER 1

Approach to Acute Chest Pain
Deborah B. Diercks and Nathan Parker

IN THIS CHAPTER

Initial approach
Acute coronary syndrome
Pulmonary embolism
Esophageal rupture
Tension pneumothorax
Aortic dissection
Cardiac tamponade
Ancillary tests
Advanced imaging
Clinical decision rules

More than 6 million Americans present to emergency departments every year with the chief complaint of acute chest pain. The differential diagnosis is extremely broad (Table 1-1). Emergency physicians have the difficult task of differentiating life-threatening causes requiring immediate intervention from more benign causes. In this chapter, we focus on the presentation of the most common critical diagnoses, their initial work-up, and the strategies employed to ensure a safe and successful disposition.

Initial Approach

All patients without an obviously benign cause of chest pain should have their vital signs assessed immediately, be connected to a monitor, and have intravenous access established. Ideally, an electrocardiogram (ECG) should be obtained in the prehospital setting. Recent data have shown that paramedics and nurses, given adequate training, can reliably diagnose ST-elevation myocardial infarction (STEMI) and subsequently alert destination hospitals. Since it has been well established that early reperfusion reduces mortality and morbidity, a system should be in place to facilitate rapid percutaneous intervention or fibrinolysis once STEMI has been confirmed. A focused history and physical examination should be performed promptly by the emergency care provider because successful management of conditions such as tension pneumothorax depends on the provider’s acting within minutes of a patient’s presentation.

KEY POINT

Patients with chest pain should have an ECG obtained on arrival.

Acute Coronary Syndrome

Of the common presenting causes of chest pain, acute coronary syndrome (ACS) presents a particular challenge to emergency physicians. Defined as the syndrome resulting from acute cardiac ischemia, ACS encompasses stable angina, unstable angina, STEMI, and non-STEMI (NSTEMI).

Missed acute myocardial infarctions (AMIs) are frequent causes of litigation against medical providers. Emergency physicians disagree over the acceptable rate of missed acute MI; most accept a rate between 0.01% and 2%. Care providers in emergency departments with low patient volumes and limited resources face particularly difficult challenges in making the diagnosis; miss rates tend to be higher in these facilities.

In the “classic” presentation of ACS, the patient usually describes the pain as pressure, squeezing, or crushing. The pain is located substernally or on the left, and it can radiate to the jaw,
neck, or arms. Associated symptoms usually include diaphoresis, nausea, vomiting, weakness, and syncope. However, none of these signs and symptoms is sensitive or specific enough on its own to rule in or out ACS independent of an ECG, cardiac biomarkers, and other diagnostic tests. Similarly, the presence of traditional risk factors such as hypertension, hyperlipidemia, diabetes mellitus, family history of coronary artery disease (CAD), and history of smoking, although positively correlating with adverse events within 6 months, does not correlate with the incidence of acute MI in the emergency department. However, emergency care providers should be cautious about an initial impression of "noncardiac chest pain" if traditional risk factors are present because 3% of patients with those factors will experience an adverse cardiac event within 30 days.

To further complicate the establishment of a diagnosis, many patients with an eventual diagnosis of acute MI present without chest pain at all. This presentation is more common among women than men (42% and 31%, respectively), but the difference decreases with increasing age. Atypical presentation of acute MI is also associated with diabetes, heart failure, advanced age, and nonwhite races.

Key Point
Many patients with ACS present without chest pain.

Pulmonary Embolism
Pulmonary embolism (PE) accounts for up to 200,000 deaths in the United States annually. Like ACS, PE represents a broad range of disease, from asymptomatic incidental findings to saddle embolus causing shock and sudden death. Among patients presenting in shock, the short-term mortality rate can reach as high as 50%.

Reflecting this broad spectrum of disease, the clinical signs and symptoms are especially difficult to interpret. In a large, prospective study, the following symptoms were present in patients diagnosed with PE: dyspnea (79%), pleuritic pain (49%), cough (43%), wheezing (31%), calf or thigh swelling (39%), and calf or thigh pain (16%). On physical examination, the following signs were present: tachypnea (57%), tachycardia (26%), rales (21%), and signs of deep vein thrombosis (DVT) in the calf or thigh (47%).

Risk factors for acute PE include recent surgery, trauma, immobility, cancer, neurologic disease with lower extremity paresis, oral contraceptive use, hormone therapy, and pregnancy. Given the difficulty in diagnosing PE, multiple clinical decision rules have been devised to aid in the workup. These rules are discussed later in this chapter.

Esophageal Rupture
Esophageal rupture is a relatively rare cause of acute chest pain among emergency department patients. Although its true incidence is unknown, the diagnosis carries a high mortality rate—approximately 20% despite modern therapies. The mean age of patients with esophageal rupture is the early 60s, and more than two thirds of patients are male. Esophageal perforations are most commonly iatrogenic, usually caused by endoscopic procedures, with a minority of ruptures resulting spontaneously from increased intraabdominal pressures typically associated with vomiting (e.g., Boerhaave syndrome). Other causes include caustic ingestions and blunt or penetrating trauma.

The classic features of esophageal rupture include the sudden onset of chest pain precipitated by severe vomiting or retching. The Mackler triad of esophageal rupture—chest pain, vomiting, and subcutaneous emphysema—was first described in 1952; this triad is absent in most patients. Associated symptoms include shortness of breath, dysphonia, dysphagia, abdominal pain, hematemesis, and melena. On physical exam-

Causes of Chest Pain

<table>
<thead>
<tr>
<th>Cardiovascular</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute MI</td>
<td>Aortic dissection</td>
<td>Cardiac tamponade</td>
</tr>
<tr>
<td>Coronary spasm</td>
<td>Pericarditis</td>
<td>Stable angina</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>Pulmonary</td>
<td></td>
</tr>
<tr>
<td>Bronchitis</td>
<td>Pneumonia</td>
<td>Pneumothorax</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>Pulmonary embolus</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholecystitis</td>
<td>Esophageal reflux</td>
<td>Esophageal rupture</td>
</tr>
<tr>
<td>Esophageal spasm</td>
<td>Esophageal tear</td>
<td>Gastritis</td>
</tr>
<tr>
<td>Esophageal tear</td>
<td>Gastritis</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Peptic ulcer disease</td>
<td></td>
</tr>
<tr>
<td>Peptic ulcer disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costochondritis</td>
<td>Muscle strain</td>
<td>Rib fracture</td>
</tr>
</tbody>
</table>

Table 1-1.
Causes of Chest Pain
Tension Pneumothorax

Nontraumatic spontaneous tension pneumothorax is also a relatively uncommon cause of acute chest pain. Approximately 1% to 2% of all spontaneous pneumothoraces present under tension. Clinically, a pneumothorax is considered to be under tension when it causes significant respiratory or hemodynamic compromise as a result of positive intrapleural pressure. In an awake patient being ventilated without positive pressure, this process can develop only if the intrapleural pressure is less than the atmospheric pressure during some period of the respiratory cycle. Therefore, the spectrum of tension pneumothorax can range from intrapleural pressure that is positive only at the end expiratory phase to pressure that is positive throughout the entire respiratory cycle.

Spontaneous pneumothorax can be divided into the following two classifications: primary spontaneous pneumothorax, which occurs in the absence of apparent underlying lung disease, and secondary spontaneous pneumothorax, which develops as a result of underlying lung pathology. Risk factors for primary spontaneous pneumothorax include male sex (6:1 relative risk compared with females), tall stature, smoking, low body mass index, sudden changes in environmental pressure, genetic predisposition, inhalant use, and even exposure to loud music. Risk factors for secondary spontaneous pneumothorax include chronic obstructive pulmonary disease, interstitial lung disease, infection, neoplasm, and connective tissue disease.

Symptoms of tension pneumothorax typically include the rapid onset of pleuritic chest pain and shortness of breath. In addition to unilateral reduced breath sounds and hyperresonance, tension pneumothorax also can present with tachycardia, tachypnea, hypotension, and tracheal deviation away from the affected side. If a tension pneumothorax is highly suspected based on the history and physical examination alone, steps should be taken immediately to relieve the pressure via needle or tube thoracostomy. A recent review showed tube thoracostomy to be superior to percutaneous aspiration; the reason was initially thought to be that the chest wall thickness exceeded the length of the catheter in percutaneous aspiration, but this does not appear to be the case. Therefore, in patients with tension pneumothorax, immediate tube thoracostomy is indicated.

KEY POINT
Immediate decompression of a suspected tension pneumothorax with tube thoracostomy is indicated before confirmation with chest radiography.

Aortic Dissection

Few critical diagnoses are as feared by emergency care providers as acute aortic dissection, which is notoriously difficult to diagnose. Some studies suggest that up to one-third of all aortic dissections are initially misdiagnosed. The difficulty is compounded by its relatively low prevalence (1 case per every 10,000 emergency department visits). Acute aortic dissection is often mistaken for myocardial infarction. The mortality rate associated with untreated dissection reaches 1% to 2% per hour during the first 48 hours.

KEY POINT
Up to one-third of all aortic dissections are misdiagnosed.

Both the DeBakey and Stanford classifications systems have been widely used for describing aortic dissections. DeBakey type I begins in the ascending aorta and extends beyond the arch. Type II involves the ascending aorta only, while type III involves only the descending aorta. Stanford type A is any dissection that involves the ascending aorta, and type B dissections do not. Although both classifications can be used, it is most important to identify if the ascending arch is involved, as dissections involving the ascending arch usually require emergent surgical intervention.

Recent guidelines published by the American Heart Association, in conjunction with other professional societies, describe important clinical risk factors for assessing the pretest probability of acute aortic dissection in patients with chest pain. These factors include Marfan or Ehlers-Danlos syndrome, a family history of aortic disease, aortic valve disease, recent aortic manipulation, thoracic aortic aneurysm, abrupt onset of pain, pain that is severe, pain that is ripping or tearing, pulse deficit in the upper limbs, focal neurologic deficit, hypotension or shock, and new aortic regurgitation murmur. When these features were applied to the International Registry of Acute Aortic Dissection, over 95% of patients with confirmed aortic dissection had at least one of them.

Research has been done to determine the factors that delay the time from presentation to diagnosis. Female patients, patients transferred from a non-tertiary care facility, and patients who have had previous cardiac surgery all had longer delays in diagnosis. The same is true for patients with mild or no pain, patients with atypical features such as fever, those with heart failure, and those with an initial ECG suggestive of myocardial ischemia. A Japanese study suggested that patients who walk into the emergency department are also more likely to have a delay in diagnosis. Given the high mortality rate associated with missed diagnosis and the relatively low incidence of this dangerous condition, high suspicion must be maintained to prevent complications.

Cardiac Tamponade

Cardiac tamponade, another relatively rare diagnosis, refers to hemodynamic compromise caused by increased pericardial pressure. The spectrum of this disease ranges from mild and asymptomatic (pericardial pressure <10 mm Hg) to severe, causing shock (pericardial pressure >20 mm Hg). Other than trauma and recent cardiac surgery, medical causes of pericardial effusion include acute pericarditis, malignancy, acute MI causing wall rupture, aortic dissection, uremia, heart failure,
bacterial or viral infection, and collagen vascular disease. The Beck triad of low arterial blood pressure, distended neck veins, and muffled heart sounds has been used to describe the signs of cardiac tamponade, but these are probably late findings. Increased sympathetic drive usually causes hypertension before the physiologic reserve is exhausted. A recent review of studies involving patients with pericardial effusion delineated the following signs and symptoms associated with the disease and their related sensitivities: dyspnea (87%–88%), pulsus paradoxus greater than 10 mm Hg (82%), tachycardia (77%), hypotension (26%), diminished heart sounds (28%), and elevated jugular venous pressure (76%).

Ancillary Tests

Electrocardiography

The 12-lead ECG is one of the cornerstones in chest pain evaluation. This chapter reviews common ECG changes that, in general, suggest important diagnoses; subtleties of ECG interpretation are discussed in depth elsewhere in this book. ECGs provide a “snapshot” of the heart’s electrophysiology. To fully capture a dynamic process, including an evolving myocardial infarction, serial ECGs repeated 30 to 60 minutes after the initial study are recommended when the initial tracing is nondiagnostic and suspicion remains for ongoing ischemia. It is important to remember that a normal ECG does not rule out acute ischemia; more than 50% of patients with missed AMI had a normal initial ECG.

ST-segment elevation has a variety of causes (Table 1-2). ST-segment elevation should raise suspicion for acute ischemia/infarct when it exists in two or more contiguous leads. When reciprocal ST-segment depression is present, the diagnosis of STEMI becomes more likely. When an inferior STEMI is suspected (elevation in lead II, III, or aVF), tracings from leads V4R through V6R can be obtained to evaluate for right ventricular infarction, as these patients are often preload dependent.

Although diffuse ST elevation and PR depression (ST depression and PR elevation in aVR) constitute the classic ECG finding in acute pericarditis, once the condition has progressed to a significant pericardial effusion, electrical alternans can be seen. For PE, the ECG is usually of little diagnostic utility. In PE, the classic finding of S1Q3T3 is rarely seen. The most common ECG findings are sinus tachycardia or nonspecific ST-segment or T-wave changes.

A recent study of 159 patients with type A aortic dissection showed that almost half of them had acute changes on the ECG. ST depression (34%) was the most common, but ST elevation (8%) was present as well. Finding these ST changes increases the risk of misdiagnosis. ST elevation in acute dissection is also associated with involvement of the coronary ostia, the right coronary artery being most commonly involved.

Chest Radiograph

The chest radiograph (CXR) is another important diagnostic tool in patients with acute chest pain. Although the CXR rarely provides the diagnosis in isolation, it can rapidly change a treatment algorithm. For example, although a CXR can provide important information in a stable patient, delaying treatment for imaging in a patient with clinically suspected tension pneumothorax is not optimal. Still, tube thoracostomy is not indicated in other diagnoses such as diaphragm rupture, which can mimic the presentation of tension pneumothorax, so the decision to image or not must be individualized for each patient.

The CXR is commonly used to evaluate patients with suspected aortic dissection, but it is neither sensitive nor specific for this disease. In one study, only 73% of patients with known type A aortic dissection had signs suggesting dissection, most commonly widened mediastinum, while 16% of normal CXRs were thought to be suspicious for dissection. Up to 90% of patients with esophageal rupture have abnormal findings on CXR, most commonly pneumomediastinum, hydropneumothorax, and isolated pleural effusion. Interestingly, the esophagus ruptures most often on the left, with subsequent development of a pleural effusion on that side.

KEY POINT

A normal chest radiograph does not rule out aortic dissection.

FIGURE 1-1.

Right heart strain; note dilated right ventricle. Photo courtesy of K. Kelley.
In one large study of patients known to have PE, cardiomegaly (27%) was the abnormality most frequently seen on CXR; 24% of patients had a normal CXR. The classic Hampton hump is rarely seen. The CXR can provide useful information when the physician is deciding whether to perform ventilation-perfusion scintigraphy or CT angiography, as patients with known chronic lung disease have a higher incidence of nondiagnostic ventilation-perfusion scans.

Ultrasoundography

Ultrasoundography has become an integral diagnostic tool in the provision of emergency care. In patients who come to the emergency department in shock, a two-dimensional transthoracic echocardiogram (2D-TTE) that shows no signs of right ventricular strain (Figure 1-1) can practically exclude PE as the cause of hypotension. However, a negative ultrasound scan does not rule out PE as a cause of chest pain. Two-dimensional transthoracic echocardiography is the gold standard for diagnosing pericardial effusion in the emergency department, and all patients with suspected pericarditis and any high-risk features should have bedside echocardiography to aid in diagnosis and rule out pericardial tamponade (Figure 1-2).

When ACS is suspected, early 2D-TTE can contribute information to the prognosis by identifying wall motion abnormalities. In a study of patients presenting to an emergency department with acute chest pain and a nondiagnostic ECG, those with a normal 2D-TTE (performed by a cardiologist) had no major cardiac events at 30 days. Structural abnormalities that might change therapeutic management, such as papillary muscle rupture or ventricular septum rupture, can also be identified; images suggesting such abnormalities should be interpreted only by experienced cardiac sonographers.

Limited data exist on the role of ultrasonography in the diagnosis of aortic dissection. In evaluating for an intimal flap, 2D-TTE can be combined with abdominal ultrasonography. The sensitivity of 2D-TTE in detecting acute aortic dissection has been reported to be 67% to 80%, while its specificity is 99% to 100%. When dissection is identified in an unstable patient, emergent cardiothoracic surgery should be expedited.

Bedside ultrasonography performed by emergency physicians has a sensitivity approaching 100% for pneumothorax, compared with a 75% sensitivity for an upright CXR. This degree of sensitivity, as well as ultrasound’s portability, has fostered the use of ultrasonography in military operations and in remote locations where other imaging modalities are unavailable. The detection of occult pneumothorax that was not seen on a CXR might not prove to be clinically significant, but it should prompt the care provider to monitor the patient closely for pneumothorax expansion.

KEY POINT

Bedside emergency ultrasonography is a valuable tool in the workup of chest pain.

Troponins

Cardiac troponins (T and I) are the preferred markers of myocardial injury in patients presenting with chest pain. They are more sensitive and specific than the biomarkers used in the past. It is important to remember, however, that myocardial necrosis can result from pathologies other than MI or ACS. With the introduction of new highly sensitive troponin (hs-cTn) assays, which are 1,000- to 10,000-fold more sensitive than the original first-generation troponin assays, differentiating the causes of myocardial necrosis (including MI and ACS) will be more important as medical care providers are challenged with interpreting an increasing number of positive tests.

Given our increased ability to measure very low concentrations of cardiac troponins, an upper limit of normal at the population-adjusted 99th percentile has been defined. With the application of this newly defined cutoff, more patients with signs and symptoms suggesting acute MI have an elevated hs-cTn level when they come to the emergency department; a recent study showed an almost 200% increase in the number of hs-cTn-positive patients who were eventually diagnosed with chest pain unrelated to coronary occlusion. Troponin is released during tachyarrhythmia in young healthy people as well as in those undergoing sustained strenuous exercise. However, even small increases in hs-cTn levels in patients presenting with chest pain have been associated with adverse short- and long-term prognoses.

The definition of AMI, which includes the “rise and/or fall of cardiac biomarkers,” may have to be refined with the advent of hs-cTn assays. An acute change in the hs-cTn level of more than 20% has been suggested as representing either new or resolving myocardial injury. However, healthy study subjects have demonstrated a baseline variability of more than 50%. It is important to note that simply changing the diagnostic criterion of AMI to include a hs-cTn change of more than 50% decreases the sensitivity of the test to less than 70%.

It is likely that the introduction of hs-cTn assays will provide several benefits to emergency medicine practice, but its place in our diagnostic algorithm has not been fully defined. It has...
been suggested that, given the fact that hs-cTn levels elevate earlier, the timing of our serial cardiac marker testing could be shortened to less than 3 hours after initial presentation. The assay might take a role analogous to the D-dimer test, given its relatively high negative predictive value. It will also be important to reevaluate our chest pain clinical decision rules, as most of them were developed before hs-cTn assays became available.

KEY POINT
The role of the new highly sensitive troponin assays remains unclear in the evaluation of patients with chest pain.

D-Dimer
The D-dimer assay has been used in the evaluation of patients for PE for more than 20 years. Although many assays exist, most used in emergency practice have a high sensitivity (typically in the mid 90% range) but low specificity for venous thromboembolism (VTE). In the contemporary diagnostic algorithm, a highly sensitive D-dimer assay that is below the designated cutoff in a non–high-risk population can be used to exclude VTE because of its negative predictive value of more than 99% in this population. In fact, the highly sensitive quantitative D-dimer test has one of the highest sensitivities of any test used in the screening of patients for VTE.

The D-dimer assay has been studied for both prognostic purposes and for evaluation of the burden of disease in PE. High D-dimer levels are associated with increased 15-day and 3-month mortality rates as well as a more central location of clots on CT angiogram. High levels are also associated with a higher pulmonary artery obstruction index.

KEY POINT
A negative D-dimer does not rule out pulmonary embolus in a population at high risk for the disease.

Recently, the use of the D-dimer assay was studied in the context of aortic dissection. A metaanalysis found a pooled sensitivity of 94%, but specificity remained poor. Concern exists regarding the proposed use of the test to rule out aortic dissection in low-risk populations, as isolated intramural hematomas or thromboses have been associated with false-negative tests. Given the low incidence of acute aortic dissection in the general population presenting with chest pain, it has been suggested that routine screening with D-dimer assays would increase CT scan utilization by approximately 40% and would not necessarily aid in timely diagnosis.

Other Biomarkers
New research has focused on addressing methods for shortening the time needed to rule out MI in the emergency department. In low-risk populations, adding either N-terminal pro-B type natriuretic peptide (NT-proBNP) or copeptin to the initial troponin assessment at presentation significantly increased the sensitivity and the negative predictive value for MI. Measuring unbound free fatty acids in addition to conventional or highly sensitive troponin also improves sensitivity and specificity in the detection of ACS. Higher levels of NT-proBNP or ST2 (a novel biomarker of cardiac stress) in patients with chest pain have been associated with increased mortality. Investigating the interesting concept that larger platelets are more active, researchers have found a correlation between mean platelet volume and ACS in patients with acute chest pain.

Advanced Imaging

Computed Tomography Angiography
Computed tomography angiography (CTA) has become the gold standard as the initial imaging test in the workup of patients suspected of having aortic dissection or PE. The sensitivity and specificity of CTA in detecting acute aortic dissection have been reported as 100% and 98% to 99%, respectively. The data associated with PE have shown larger variations in accuracy. The largest study to date, PIOPED II, reported sensitivity of 83% and specificity of 96%, but most of the scans were performed with four-slice CT. It is possible that with the arrival of 64-slice multidetector CT the diagnostic accuracy will increase significantly, thereby allowing a negative CTA alone to be used to effectively rule out PE as the cause of chest pain in all risk groups.

As diagnostic accuracy increases with improved technology, an increasing number of isolated subsegmental PEs are being diagnosed with CTA. No consensus has been reached regarding the proper management of patients with isolated subsegmental PE because 3-month outcomes are generally favorable and the risk of hemorrhage with anticoagulation might outweigh the benefits.

Coronary Computed Tomography Angiography
Coronary CTA (CCTA) has received much attention in recent years, with a flurry of data about its use coming out in a short time. Although the role of CCTA has not been established or extensively validated in the workup of chest pain in the emergency department, its proposed use has been hotly debated. A recent metaanalysis involving only prospective studies estimated the sensitivity and specificity of CCTA for ACS to be 95%.

TABLE 1-3. PERC Rule

<table>
<thead>
<tr>
<th>Age under 50 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate less than 100 beats/min</td>
</tr>
<tr>
<td>Oxygen saturation of more than 94% on room air</td>
</tr>
<tr>
<td>No history of DVT/PE</td>
</tr>
<tr>
<td>No recent trauma/surgery</td>
</tr>
<tr>
<td>No hemoptysis</td>
</tr>
<tr>
<td>No exogenous estrogen</td>
</tr>
<tr>
<td>No clinical signs of DVT</td>
</tr>
</tbody>
</table>

If all eight criteria are met, patient has less than a 2% chance of having PE.
and 87%, respectively.92

Heralded for its high negative predictive value and its potential to rule out ACS with a negative scan, CCTA has been shown to decrease time to diagnosis and disposition.93,94 Critics of CCTA point out its low positive predictive value—all patients with significant underlying CAD, stable or not, will likely have a positive scan and thus require additional testing.95 The radiation exposure must also be considered, as well as the fact that the study cannot be performed in patients with renal failure, those unable to tolerate beta-blockers, and those with ectopic rhythms.96 While not yet standard of care, CCTA will likely find a role in rapidly triaging patients who are at low to intermediate risk for ACS and who have initially normal cardiac markers and an ECG that does not raise concern.97,98

Triple-Rule-Out Computed Tomography Angiography

A recently developed protocol combines CCTA with imaging of the pulmonary arteries and thoracic aorta. Triple-rule-out CTA enables patients to be simultaneously evaluated for ACS, PE, and aortic dissection in less than 20 minutes. The protocol has significant limitations: it is technically difficult to perform, it delivers a 50% larger dose of radiation than CCTA, and its image quality varies.99 However, because more than 20% of patients evaluated for ACS are simultaneously assessed for PE or aortic dissection, performing only one imaging study would decrease their overall radiation exposure.100 As with CCTA, the use of triple-rule-out CTA has not yet been validated in large prospective trials, but it may still find a role in ruling out disease in low- to intermediate-risk patients.1

Clinical Decision Rules

Considering the difficulty in accurately diagnosing the cause of chest pain while performing an efficient and cost-effective workup, multiple clinical decision rules have been devised to assist emergency physicians. Many of these rules have been well validated in large prospective trials. These rules should never replace the physician’s best judgment, but they can be helpful when the differential diagnosis remains large. In this section, we describe a few of the more recognized clinical decision rules, along with their limitations.

Pulmonary Embolism Rule-out Criteria

The pulmonary embolism rule-out criteria (PERC) rule (Table 1-3) was devised to avoid additional testing in patients with a low pretest probability for PE. If a patient meets all eight criteria, his or her probability of having PE is less than 2%, which is an appropriate cutoff to discontinue further testing.101 The rule’s sensitivity for detecting PE is 97%; however, caution is advised, because the rule applies only to patients for whom the clinical suspicion for PE is low (<15%).102 In patients for whom the probability is high, the PERC rule does not safely exclude the condition.103

<table>
<thead>
<tr>
<th>TABLE 1-4.</th>
<th>PE Risk Stratification104,105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wells</td>
<td>Score</td>
</tr>
<tr>
<td>Clinical signs and symptoms of DVT</td>
<td>+3</td>
</tr>
<tr>
<td>PE is most likely diagnosis</td>
<td>+3</td>
</tr>
<tr>
<td>Heart rate above 100 beats/min</td>
<td>+1.5</td>
</tr>
<tr>
<td>Immobilization in past 3 days or surgery in the past 4 weeks</td>
<td>+1.5</td>
</tr>
<tr>
<td>Previous DVT/PE</td>
<td>+1.5</td>
</tr>
<tr>
<td>Hemothysis</td>
<td>+1</td>
</tr>
<tr>
<td>Malignancy with treatment in past 6 months or palliative care</td>
<td>+1</td>
</tr>
<tr>
<td>Low risk (15%)</td>
<td><2 points</td>
</tr>
<tr>
<td>Intermediate risk (29%)</td>
<td>2-6 points</td>
</tr>
<tr>
<td>High risk (59%)</td>
<td>>6 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revised Geneva</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower extremity tenderness and unilateral edema</td>
<td>+4</td>
</tr>
<tr>
<td>Unilateral leg pain</td>
<td>+3</td>
</tr>
<tr>
<td>Heart rate between 75 and 94 beats/min</td>
<td>+3</td>
</tr>
<tr>
<td>Heart rate above 95 beats/min</td>
<td>+5</td>
</tr>
<tr>
<td>Surgery or fracture within 1 month</td>
<td>+2</td>
</tr>
<tr>
<td>Previous DVT/PE</td>
<td>+3</td>
</tr>
<tr>
<td>Hemothysis</td>
<td>+2</td>
</tr>
<tr>
<td>Active malignancy</td>
<td>+2</td>
</tr>
<tr>
<td>Patient older than 65 years</td>
<td>+1</td>
</tr>
<tr>
<td>Low risk (8%)</td>
<td><4 points</td>
</tr>
<tr>
<td>Intermediate risk (28%)</td>
<td>4-10 points</td>
</tr>
<tr>
<td>High risk (74%)</td>
<td>>10 points</td>
</tr>
</tbody>
</table>
KEY POINT

In a low-risk population, a negative PERC score can preclude the need for further workup for pulmonary embolus.

Wells and Revised Geneva Scores

The Wells and revised Geneva scores (Table 1-4) were developed by assessing the clinical probability of PE and have been validated in large clinical trials.103,104 Both scores successfully stratify patients into low-, intermediate-, and high-risk groups for PE, but the Wells score is superior for the identification of patients in the high-risk group.106 Critics of the Wells score point to the subjective nature of the score. It asks care providers to determine if PE is the most likely diagnosis. In contrast, the revised Geneva score is based solely on objective data.107 In patients with an “unlikely” probability in the Wells or revised Geneva score (≤4 or <4, respectively), a negative highly sensitive D-dimer assay may be used to exclude PE without additional testing.108

Thrombolysis In Myocardial Infarction Risk Score

The Thrombolysis In Myocardial Infarction (TIMI) risk score (Table 1-5) has been well validated as a method to stratify patients diagnosed with unstable angina/NSTEMI according to their risk for adverse events. The score is used to guide therapeutic and prognostic decision making.109 The TIMI risk score also correlates with outcomes when applied to emergency department patients110; however, its sensitivity alone has been shown repeatedly to be inadequate at ruling out ACS in the unique population of emergency department patients.108,111 Although attempts have been made to create a “modified TIMI score” with improved performance in risk stratification, the new decision rule was still unable to screen patients safely for adverse events in the emergency department.112

HEART Score and North American Chest Pain Rule

The HEART score and the North American Chest Pain Rule (NACPR) were devised to identify patients who experienced chest pain but are suitable for early discharge without stress testing or cardiac imaging.113,114 Both tools have yet to be validated in large multicenter prospective trials, but they have been shown initially to have an acceptable miss rate (<1%) for adverse events when combined with serial troponin measurements.115 It is unlikely that these rules will change clinical practice, as they generally describe the current standard of care for ACS evaluation in the emergency department.

Conclusion

Chest pain is a common emergency department presentation and has multiple causes. Emergency providers should take a careful and systematic approach to evaluating patients with chest pain. As technology has improved and tests have become more sensitive, providers must navigate the increasingly complex workup and allocate resources appropriately. By using the strategies outlined in this chapter, emergency physicians should be able to diagnose the life-threatening causes of chest pain safely and successfully.

References

95. Hendel RC. Is computed tomography coronary angiography the most accurate and effective noninvasive imaging tool to evaluate patients with acute chest pain in the emergency department?—a cautionary viewpoint. J Am Coll Cardiol. 2012;60(2):144-140.

